Support Chiropractic Research!

Evaluation & Management

Clinical Disorders and the Sensory System

By |April 11, 2013|Chiropractic Education, Diagnosis, Education, Evaluation & Management, General Health, Health Promotion, Neurology, Orthopedic Tests, Radiculopathy, Spinal Manipulation|

Clinical Disorders and the Sensory System

The Chiro.Org Blog


We would all like to thank Dr. Richard C. Schafer, DC, PhD, FICC for his lifetime commitment to the profession. In the future we will continue to add materials from RC’s copyrighted books for your use.

This is Chapter 4 from RC’s best-selling book:

“Basic Principles of Chiropractic Neuroscience”

These materials are provided as a service to our profession. There is no charge for individuals to copy and file these materials. However, they cannot be sold or used in any group or commercial venture without written permission from ACAPress.


Chapter 8: Clinical Disorders and the Sensory System

This chapter describes those sensory mechanisms, joint signals, and abnormal sensations (eg, pain, thermal abnormalities) that have particular significance within clinical diagnosis. The basis and differentiation of pain are described, as are the related subjects of trigger points and paresthesia. The chapter concludes with a description of the neurologic basis for the evaluation of the sensory system and the sensory fibers of the cranial nerves.


THE ANALYSIS OF PAIN
IN THE CLINICAL SETTING


Although all pain does not have organic causes, there is no such thing as “imagined” pain. Pain that can be purely isolated as a structural, functional, or an emotional effect is rare. More likely, all three are superimposed upon and interlaced with each other in various degrees of status. This is also true for neural, vascular, lymphatic, and hormonal mechanisms.

Common Causes of Pain and Paresthesia

The common causes of pain and paresthesia are:

(1) obvious direct trauma or injury;

(2) reflex origins in musculoskeletal lesions, which deep pressure often exaggerates, such as trigger areas;

(3) peripheral nerve injury (eg, causalgia), which results in an intense burning superficial pain;

(4) the presence of nerve inflammations and degeneration of the peripheral or CNS, which frequently cause other changes indicative of such lesions; (more…)

The Horizontal Neurologic Levels

By |April 8, 2013|Chiropractic Care, Chiropractic Education, Clinical Decision-making, Diagnosis, Education, Evaluation & Management, Health Promotion, Neurology|

The Horizontal Neurologic Levels

The Chiro.Org Blog


We would all like to thank Dr. Richard C. Schafer, DC, PhD, FICC for his lifetime commitment to the profession. In the future we will continue to add materials from RC’s copyrighted books for your use.

This is Chapter 4 from RC’s best-selling book:

“Basic Principles of Chiropractic Neuroscience”

These materials are provided as a service to our profession. There is no charge for individuals to copy and file these materials. However, they cannot be sold or used in any group or commercial venture without written permission from ACAPress.


Chapter 4: The Horizontal Neurologic Levels
and Related Clinical Concerns


This chapter describes the basic functional anatomy and clinical considerations of the horizontal aspects of the supratentorial, posterior fossa, spinal, and peripheral levels of the nervous system.


OVERVIEW


The reader should keep in mind that the various aspects of the nervous system as described in this manual (eg, longitudinal and horizontal systems) are only reference guides that are visualizations of a patient’s nervous system in the upright position. They can be likened to the lines of longitude and latitude on a globe of the earth.

Such systems do not exist physically, but they do serve as excellent mental grid-like tools (viewpoints) during localization and areas in which and from which relationships can be described. For example, although the longitudinal systems take a general vertical course within the spinal column there are numerous alterations and they actually become horizontal when decussating. While the horizontal levels are spatially placed in and extend from the CNS in a general segmental manner, they soon take a widely diffuse course as they project toward their destinations. Thus, references to longitudinal and horizontal levels are just general viewpoints.

It is helpful for study purposes to isolate the body into certain systems, as described above, organize systems into organs, organs into tissues, tissues into cells, and cells into their components. However, we should keep in mind that, physically and functionally, there is only one integrated body and it is more than the sum of its parts. And even the body cannot be thought of as truly separate from its external environment. Although we may do this for study purposes, it is a limited viewpoint.

(more…)

The Longitudinal Neurologic Systems

By |April 5, 2013|Chiropractic Education, Clinical Decision-making, Diagnosis, Education, Evaluation & Management, Neurology|

The Longitudinal Neurologic Systems

The Chiro.Org Blog


We would all like to thank Dr. Richard C. Schafer, DC, PhD, FICC for his lifetime commitment to the profession. In the future we will continue to add materials from RC’s copyrighted books for your use.

This is Chapter 3 from RC’s best-selling book:

“Basic Principles of Chiropractic Neuroscience”

These materials are provided as a service to our profession. There is no charge for individuals to copy and file these materials. However, they cannot be sold or used in any group or commercial venture without written permission from ACAPress.


Chapter 3: The Longitudinal Neurologic Systems

This chapter succinctly describes the basic structure and function of the six major longitudinal systems; viz, the sensory, motor, visceral, vascular, consciousness, and cerebrospinal fluid systems.

As we begin this chapter, it might be well for the reader to subjectively grasp the significance of the motor and sensory systems as far as possible. One exercise in this is to imagine that you had become unconscious and someone has placed you in a remote dark empty cellar, far beyond any source of environmental sound. The first thing you realize is that you are a total sensory and motor paralytic from the neck caudad. You are unable to move even a fingertip because your motor system is not functioning. Because there is no feeling, you do not know whether you are recumbent or tied in a chair. Your vision is normal, but there is no light. Your hearing is normal, but there is no sound. Your taste buds are functional, but there is nothing to eat or drink. Your olfactory organs are functional, but there are no detectable odors. There is little left except thought and memory.

After a time in this predicament, thoughts undoubtedly arise such as, “I wish I had really looked at the beauty of the world when I had a chance. I wish I had listened to the music of the masters and even the birds in my backyard when I had a chance. I gulped down so many delicious meals. I had a beautiful garden, but I rarely took time to appreciate its design and fragrance. I even failed to take time to appreciate the texture of my own clothes. I was in such a hurry to go nowhere that was more important. I missed so much.”


OVERVIEW


The human nervous system is a marvel in organizing and adapting to internal and external environmental changes:

(1) The receptors and afferent neurons of the visceral and somatic input systems are necessary to detect internal and external environmental changes.

(2) The visceral efferent neurons and the muscles of the motor output system must be stimulated if action is to be taken.

(3) The integrative system serves as intermediary stations via a complex arrangement of interneurons whose synapses control impulse strength and signal direction from the sensory system to the motor system.

(more…)

Clinical Biomechanics: Mechanical Concepts and Terms

By |January 6, 2013|Chiropractic Care, Clinical Decision-making, Diagnosis, Education, Evaluation & Management, Spinal Manipulation|

Clinical Biomechanics: Mechanical Concepts and Terms

The Chiro.Org Blog


We would all like to thank Dr. Richard C. Schafer, DC, PhD, FICC for his lifetime commitment to the profession. In the future we will continue to add materials from RC’s copyrighted books for your use.

This is Chapter 2 from RC’s best-selling book:

“Clinical Biomechanics:
Musculoskeletal Actions and Reactions”

Second Edition ~ Wiliams & Wilkins

These materials are provided as a service to our profession. There is no charge for individuals to copy and file these materials. However, they cannot be sold or used in any group or commercial venture without written permission from ACAPress.


Chapter 2:   Mechanical Concepts and Terms

All motor activities such as walking, running, jumping, squatting, pushing, pulling, lifting, and throwing are examples of dynamic musculoskeletal mechanics. To better appreciate the sometimes simple and often complex factors involved, this chapter reviews the basic concepts and terms involved in maintaining static equilibrium. Static equilibrium is the starting point for all dynamic activities.


Energy and Mass


Biomechanics is constantly concerned with a quantity of matter (whatever occupies space, a mass) to which a force has been applied. Such a mass is often the body as a whole, a part of the body such as a limb or segment, or an object such as a load to be lifted or an exercise weight. By the same token, the word “body” refers to any mass; ie, the human body, a body part, or any object.


Energy

Energy is the power to work or to act. Body energy is that force which enables it to overcome resistance to motion, to produce a physical effect, and to accomplish work. The body’s kinetic energy, the energy level of the body due to its motion, is reflected solely in its velocity, and its potential energy is reflected solely in its position. Mathematically, kinetic energy is half the mass times the square of the velocity: m/2 X V524. In a closed system where there are no external forces being applied, the law of conservation of mechanical energy states that the sum of kinetic energy and potential energy is equal to a constant for that system.

Potential energy (PE), measured in newton meters or joules, is also stored in the body as a result of tissue displacement or deformation, like a wound spring or a stretched bowstring or tendon. It is expressed mathematically in the equation PE = mass X gravitational acceleration X height of the mass relative to a chosen reference level (eg, the earth’s surface). Thus, a 100-lb upper body balanced on L5 of a 6-ft person has a potential energy of about 300 ft-lb relative the ground.


The Center of Mass

The exact center of an object’s mass is sometimes referred to as the object’s center of gravity. When an object’s mass is evenly distributed throughout, the center of mass is located at the object’s geometric center. In the human body, however, this is infrequently true, and the center of mass is located towards the heavier, often larger, aspect. When considering the body as a whole, the center of mass in the anatomic position, for instance, is constantly shifted during activity when weight is shifted from one area to another during locomotion or when weight is added to or subtracted from the body.

The term weight is not synonymous with the word mass. Body weight refers to the pull of gravity on body mass. Mass is the quotient obtained by dividing the weight of a body by the acceleration due to gravity (32 ft/sec524). Each of these terms has a different unit of measurement. Weight is measured in pounds or kilograms, while mass is measured by a body’s weight divided by the gravitational constant. The potential energy of gravity can be simply visualized as an invisible spring attached between the body’s center of mass and the center of the earth. The pull is always straight downward so that more work is required to move the body upward than horizontally (Fig. 2.1).


Newton’s Laws of Mechanics


(more…)

Multiple Myeloma Presenting as Sacroiliac Joint Pain: A Case Report

By |August 6, 2012|Diagnosis, Evaluation & Management, Multiple Myeloma|

Multiple Myeloma Presenting as Sacroiliac Joint Pain: A Case Report

The Chiro.Org Blog


SOURCE:   J Can Chiropr Assoc. 2012 (Jun); 56 (2):94-101


Danielle Southerst, BScH, DC, John Dufton, DC, MSc, MD,
Paula Stern, BSc, DC, FCCS(C)

Canadian Memorial Chiropractic College,
Division of Graduate Studies,
6100 Leslie Street,
Toronto, ON, M2H 3J1,
(416) 482-2344 x 287;
dsoutherst@cmcc.ca.


Multiple Myeloma (MM) is the most common primary cancer of bone in adults. The clinical presentation of MM is varied and depends on the sites and extent of involvement. Most importantly for chiropractors, the leading clinical symptoms of MM are related to bone neoplasm and may mimic pain of musculoskeletal origin. The following is the case of a 56 year old male chiropractic patient presenting with a 6 month history of sacroiliac joint pain previously diagnosed and managed unsuccessfully as a hematoma by multiple providers. Physical examination, imaging, and laboratory investigations confirmed a diagnosis of MM. The case report describes relevant pathophysiology, clinical presentation, imaging, and management for MM, while illustrating key issues in patient management as they relate to chiropractic practice and the recognition of pathology in the context of musculoskeletal pain.


 

From the FULL TEXT Article

Introduction:

Multiple Myeloma (MM) is a primary malignancy of bone marrow characterized by clonal proliferation of plasma cells and production of monoclonal immunoglobulin. It is the most common primary bone cancer in adults [1,2] contributing to 1.3% of new cancer cases in Canada and 1.9% of cancer deaths. [3] In 2008, an estimated 6000 Canadians were living with the disease, including 2100 newly diagnosed. [3] Myeloma is slightly more prevalent in males [4-6] and blacks. [4,5,7] The median age at diagnosis is 66, with the majority diagnosed over the age of 60; [8,9] however in a review of 1027 patients diagnosed with MM, 30% were under the age of 60 and the age of diagnosis ranged from 20–92. [8] The most common symptoms reported are those related to bone neoplasm including unexplained backache that is often severe and precipitated by movement. [8,11] These symptoms may motivate a patient to seek conservative care for what is assumed to be a complaint of musculoskeletal origin. This case emphasizes key components of patient management as they relate to chiropractic practice and the recognition of pathology in the context of a patient presenting with pain of presumed musculoskeletal origin.


Discussion:

Pathophysiology (more…)

A Practical Guide to Avoiding Drug-Induced Nutrient Depletion

By |June 25, 2012|Clinical Decision-making, Complementary Medicine, Diagnosis, Drug-Induced Nutrient Depletion, Evaluation & Management, Evidence-based Medicine, Iatrogenic Injury, Supplementation|

A Practical Guide to Avoiding Drug-Induced Nutrient Depletion

The Chiro.Org Blog


SOURCE:   Nutrition Review ~ October 2011

By Hyla Cass, MD


A little known, but potentially life-saving fact is that common medications deplete your body of a host of vital nutrients essential to your health. This practical guide will show you how to avoid drug-induced nutrient depletion and discuss options for replacing nutrient-robbing medications with natural supplements.

America has been called a pill-popping society, and the statistics bear this out. Nearly 50 percent of all American adults regularly take at least one prescription drug, and 20 percent take three or more. [1] Our increasing reliance on prescription medications has contributed to the growing problem with nutrient depletion. The truth is that every medication, including over-the-counter drugs, depletes your body of specific, vital nutrients. This is especially concerning when you consider that most Americans are already suffering from nutrient depletion. Additionally, many of the conditions physicians see in their everyday practice may actually be related to nutrient depletion. The good news is that, armed with information and the right supplements, you can avoid the side effects of nutrient depletion, and even better, you may be able to control and prevent chronic diseases, such as diabetes, cardiovascular disease and osteoporosis.

There is more info like this at our:

Nutrient Depletion Page

A Common Scenario

(more…)